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Dimensional crossover and driven interfaces in disordered ferromagnets
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We study the depinning transition of driven interfaces in thin ferromagnetic films driven by external mag-
netic fields. Approaching the transition point the correlation length increases with decreasing driving. If the
correlation length becomes of the order of the film thickness a crossover to two-dimensional behavior occurs.
From the corresponding scaling analysis, we determine the exponents characterizing the transition of the
three-dimensional system.
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I. INTRODUCTION this position. This was done in Refl14], where a
Pt(3.4 nm)/Co(0.5 nm)/Pt(6.5 nm) film with perpendicu-
We study interface motion in the random-field Ising lar anisotropy was investigated. Due to the film thickness the
model (RFIM). In this model an interface separates regionsauthors saw evidence to neglect the height dependence of the
of opposite spin orientation. A magnetic field forces the in-interface position and to treat the interface not as a two-
terface to move whereas this motion is hindered by the disdimensional interface but as a one-dimensional line. With
order. At zero temperature, a permanent interface motion igcreasing film thickness, however, this assumption fails be-
found if the driving fieldH exceeds a critical threshold,  cause then the correlation length drops below the film thick-
determined by the disorder. The vanishing of the interfacaness causing a crossover to three-dimensional behavior. This
velocity at H=HJT=0) is, in general, referred to as a scenario is investigated in the present paper in the context of
continuous phase transitionl-3]. Considering three- driven interfaces in the random field Ising model.
dimensional systems, for instance, the interface velogity
vanishes at the so-called pinning/depinning transition ac-
cording to v(T=0)~(H—H)?3 and v(H=H.)~T%d,
respectively(see, e.g.,3,4]). The correlation length diverges The RFIM is defined by the Hamiltonian
algebraically:é~(H—Hy) ~"3d [3,5].
This pinning/depinning transition can be understood J
within the framework of the renormalization group theory H=—> > SS-HX S—2> hs. (1)
(see, e.g., Ref§6—10 and references therginWithin this () i i
theory it is found that the order parameter of a continuous
phase transition is a generalized homogenous function of, ifthe first term is the exchange interaction of neighboring
general, several thermodynamic parametdb In many  spins and the sum is taken over all pairs of theSp=«(=1).
cases temperature and magnetic field belong to these paraifihe second term specifies the coupling to the driving fitld
eters. Additional parameters may cause crossovers. ExAdditionally, the spins are coupled to independent quenched
amples are spatial anisotropies in Heisenberg modell  local random-field$; characterized by their probability den-
dipolar effects[11], or restrictions due to geometry like in sity p(h;) given by
thin films (see, e.g., Ref12] and references therginn the
case of thin films the system behaves like a three- (2A)7L for |hy|<A
dimensional system only as long as the correlation leggth p(h)= _ )
is small as compared to the film thicknésépproaching the 0 otherwise.
transition point the componer of the correlation length
perpendicular to the film layers is bounded by the film thick-We use a random-sequential update with transition probabili-
ness. If§, /1 becomes of the order of unity a crossover fromties according to a heat bath algorithm in the limit of zero
three- to two-dimensional behavior occurs. Experiments thatemperature. Since in the vicinity of the critical point finite-
determine domain wall velocities in magnetic films typically size effects may not only occur due to the finite film thick-
image the magnetic state of a sample by lookorgo the  ness but also due to the other finite extensions of our system,
sample using the magneto-optical polar Kerr effect and ave calculated the interface velocities for each film thickness
charge coupled devicécCD) camera[13,14. If the film is | varying the other extensions of the system. For sufficient
sufficiently thin it is possible to obtain the interface positionlarge extensions, we observed no finite-size effects from
from snapshots generated by the CCD camera and to calcwhich we concluded that the data presented in the following
late the interface velocity from the time dependence ofcorrespond within negligible errors to those of an infinite
extended film of thicknesk Note that for this analysis the
extensions of the system must be increased if one approaches
*Email address: lars@thp.uni-duisburg.de the critical point. But this increase requires an increase in
TEmail address: usadel@thp.uni-duisburg.de computer time that restricts, therefore, the data to values not

II. SIMULATION
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FIG. 1. Snapshot of a moving interface obtained in a film con- 040 -
sisting of six magnetic layers. Overhangs, which are rare and small, )
are not shown. In the gray sketched area below the interface the
spins are aligned parallel to the driving field. Spins above the inter- * A=3.0
face are aligned antiparallel and not shown. 0.00 . .
1.5 2.0 2.5
too close to the critical point. We investigate system sizes of H
up tolx L?=8x 1024 unit cells of a body centered cubic £, 2. Interface velocities obtained for various film thick-
lattice. nessed and different driving fieldH. We also plot the interface

We apply periodic boundary conditions in the directionsyeiocity of the bulk system. Approachinig (1) the system size
parallel to the film and antiperiodic ones perpendicular to thenust be increased in order to find negligible finite-size efféste
interface(see Ref[3]). The interface moves along thi#00]  Sec. I). The curves terminate at fields, where the finite-size effects
direction of the bcc lattice resulting in a finite interface ve- set in for the largest set sites accessible numerically.
locity for any driving fieldH+#0 in the absence of disorder.

The same behavior is found, for instance, on simple cubibecomesl dependent and is shifted according kb (l)

lattices with an interface moving along the diagonal direction— H§d~x* |~ Y734 (see Ref[12] and references therginin-

of the lattice[2,3] and on diamond lattices with the interface serting this relation into Eq4) one finds thaf (x) does not

moving along thg 100] direction. The schematic phase dia- vanish atx=0 but at a finite value* .

gram in Ref[3] applies to all of these cases. In particular, a  |n Fig. 2 we plotv(H) for different film thicknesses. For

continuous phase transition is found far>J as long as  a comparison, we also plot velocities obtained in a three-

nucleation does not occur. This is the casefor 3, which  dimensional system. From the data it is evident that the

turns out to be a convincing choice because then the dimercurvesv (H) for different film thicknesses deviate more and

sional crossover is numerically accessible for a broad ranggore from the bulk behavior with decreasikg In the cor-

of system sizes. responding region oH values the crossover from two- to

three-dimensional behavior occurs, which thus is numeri-

Ill. RESULTS cally accessible. In the crossover region the interface veloc-

_ _ _ . _ ity in a film turns out to be smaller than in the bulk meaning

In our simulations we start with an originally flat interface ¢ the threshold field, is shifted towardsarger values of
that is built into the system. After a transient regime they,o qriving field. Rescaling the velocities according to Eq.
interface reacheg a stationary state. In Fig. 1, we show th&) yields the data collapse shown in Fig. 3. From the col-
snapshot of an interface configuratiofor H=1.8 andA 3056 it may be concluded that the scaling functiéx) [see
=3.0). Overhangs are not dlsplayeq since they are rare a 4. (4)] vanishes at a valug* >0, again meaning that the
small. W(_a_obEun the_lnterff':lce veIOC|ty_ from the mean Inter-rashold field is shifted towards larger values with decreas-
face positionh at a given timet according tov = dh/dt. In ing film thickness. We obtain8;4=0.677+0.07 anngd
Ref. [3] it was argued that this velocity is a generalized ho-—1 491+0.02. These values coincide within the error bars

mogeneous function of temperature and driving field. Weyith those found in bulk systems. In this cageset of Fig.
generalize this ansatz to the present situation and incIud@ we find gP%=0.64+0.05 andH"*=1.5+0.015 con-
.64+0. o .5+0.

additionally a thickness dependencevof firming the results of the crossover scaling. From the data

collapse in Fig. 3, we also obtaingg=0.763+0.03. Both
B3q andvgy coincide within the error bars with values found
Here, T denotes the temperature aner H—H3? the reduced  ON other lattices and different values Hf[3-5]. Also, they
driving field. In a bulk system we recover under the assump@9ree with the exponents of the Edwards-Wilkinson equation
tion v(1~t=0)=finite (3) v~TYaf( 7T P2a%0) that is with quenched d|sord§(see, e.g., Ref49,10,19 and refer-
known to be satisfied in the RFIf2,3]. In the following we ~ €Nces therein For this equationBqew~0.62 and voey

v=Av(N"YPaag \~%aT N~ 1), ®)

consider onlyT=0. Choosing\ =1 #2424 in Eq. (3) we ~0.77 was obtained by am expansion valid to ordee?
obtain for the velocity the following scaling behavior: [10]'_ _ . L )
Since the interface velocity satisfies the ansatz (Bj.it

v=1"Paa/saf (5| V¥3q) (4) is possible to draw conclusions about the critical behavior at

H(1). Consideringf(x) with x=7I*2¢ and taking into ac-
with f(x—c)~xPad, In this limit the value ofH coincides  count thatvgq>0 one findsx=0 atH(l) for any finite film
with that of the bulk system. For any finite however,H.  thickness. On the other hand, a three-dimensional system
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05 ' ' rounding of the depinning transitiofv~TY%d at H
=H(I)] is given by 8,4~5 (see Ref[2]) for any finite film
03t thickness.
~ o4 IV. CONCLUSION
&, In conclusion, we have investigated the depinning transi-
> tion of a driven interface in thin films. We have found that
8 o 1 the critical behavior is governed by the two-dimensional fix
point and the corresponding exponents for any finite film
03} . thickness. The exponents obtained by the crossover scaling
are in agreement with those of the Edwards-Wilkinson uni-
05 versality class. The scaling ansatz used to analyze our data

0.0 10.0 L, 200 30.0 could also be used to determine critical exponents of the
ni depinning transition of three-dimensional systems experi-
, , , mentally, in particular, since present experimental technique
FIG. 3. Scaling plot gccordlng to quf). For convenience We | sq thin films as sampldd3,14. In Ref.[13], for instance,
rescale they axes by using the lqg function. From the data é:dol- Co,gPty, alloy films were investigated with grain sizes of
lapse we obtaingsy=0.677-0.07, v3,=0.763£0.03, andH, typically 20 nm and film thicknesses of 5-50 nm. If one
=1.491+0.02. Th_e Tslket shows the mterfaé:(lak velocities of the bU|knaiver assumes that by a variation of temperature and/or
system. We obtairg™"*=0.64+0.05 andH;™=1.5+0.015. For  qyiving field it is possible to increase the correlation length
small values ofy all curves join the data collapse. For sufficient from the size of the grain to the film thickness, we expect the
large 7, i.e., well above the crossover region, the scaling ansatz Ed..ossover scalingd) to work and to yield the exponents of a
(4) does not hold as can be seen from the deviations of singlg, eq_dimensional sample. Note that due to dipolar interac-
curves from the scaling behavior. tions these exponents need not to coincide with those of the
RFIM.
corresponds to the limit—o and in this casé(x) is deter-
mined by the limiting behaviof (x— %) ~xA3d, The critical ACKNOWLEDGMENTS
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